
sphinxcontrib-trio Documentation
Release 1.1.2

Nathaniel J. Smith

May 04, 2020

Contents

1 Vital statistics 3

2 The big idea 5

3 The details 7
3.1 Autodetection heuristics . 7

4 Examples 9

5 Bugs and limitations 11

6 Acknowledgements 13

7 Revision history 15
7.1 Sphinxcontrib_Trio 1.1.2 (2020-05-04) . 15
7.2 Sphinxcontrib_Trio 1.1.1 (2020-03-26) . 15
7.3 Sphinxcontrib_Trio 1.1.0 (2019-06-03) . 15
7.4 Sphinxcontrib_Trio 1.0.2 (2019-01-27) . 16
7.5 sphinxcontrib-trio 1.0.1 (2018-02-06) . 16
7.6 sphinxcontrib-trio v1.0.0 (2017-05-12) . 16
7.7 sphinxcontrib-trio v0.9.0 (2017-05-11) . 16

Index 17

i

ii

sphinxcontrib-trio Documentation, Release 1.1.2

This sphinx extension helps you document Python code that uses async/await, or abstract methods, or context man-
agers, or generators, or . . . you get the idea. It works by making sphinx’s regular directives for documenting Python
functions and methods smarter and more powerful. The name is because it was originally written for the Trio project,
and I’m not very creative. But don’t be put off – there’s nothing Trio- or async-specific about this extension; any
Python project can benefit. (Though projects using async/await probably benefit the most, since sphinx’s built-in tools
are especially inadequate in this case.)

Contents 1

https://trio.readthedocs.io

sphinxcontrib-trio Documentation, Release 1.1.2

2 Contents

CHAPTER 1

Vital statistics

Requirements: This extension currently assumes you’re using Python 3.5+ to build your docs. This could be relaxed
if anyone wants to send a patch.

Documentation: https://sphinxcontrib-trio.readthedocs.io

Bug tracker and source code: https://github.com/python-trio/sphinxcontrib-trio

License: MIT or Apache 2, your choice.

Usage: pip install -U sphinxcontrib-trio in the same environment where you installed sphinx, and
then add "sphinxcontrib_trio" to the list of extensions in your project’s conf.py. (Notice that
"sphinxcontrib_trio" has an underscore in it, NOT a dot. This is because I don’t understand namespace
packages, and I fear things that I don’t understand.)

Code of conduct: Contributors are requested to follow our code of conduct in all project spaces.

3

https://sphinxcontrib-trio.readthedocs.io
https://github.com/python-trio/sphinxcontrib-trio
https://github.com/python-trio/sphinxcontrib-trio/blob/master/CODE_OF_CONDUCT.md

sphinxcontrib-trio Documentation, Release 1.1.2

4 Chapter 1. Vital statistics

CHAPTER 2

The big idea

Sphinx provides some convenient directives for documenting Python code: you can use the method:: di-
rective to document an ordinary method, the classmethod:: directive to document a classmethod, the
decoratormethod:: directive to document a decorator method, and so on. But what if you have a classmethod
that’s also a decorator? And what if you want to document a project that uses some of Python’s many interesting
function types that Sphinx doesn’t support, like async functions, abstract methods, generators, . . . ?

It would be possible to keep adding directive after directive for every possible type: asyncmethod::,
abstractmethod::, classmethoddecorator::, abstractasyncstaticmethod:: – you get the
idea. But this quickly becomes silly. sphinxcontrib-trio takes a different approach: it enhances the basic function::
and method:: directives to accept options describing the attributes of each function/method, so you can write ReST
code like:

.. method:: overachiever(arg1, ...)
:abstractmethod:
:async:
:classmethod:

This method is perhaps more complicated than it needs to be.

and you’ll get rendered output like:

abstractmethod classmethod await overachiever(arg1, ...)
This method is perhaps more complicated than it needs to be.

While I was at it, I also enhanced the sphinx.ext.autodoc directives autofunction:: and
automethod:: with new versions that know how to automatically detect many of these attributes, so you could
just as easily have written the above as:

.. automethod:: overachiever

and it would automatically figure out that this was an abstract async classmethod by looking at your code.

And finally, I made the legacy classmethod:: directive into an alias for:

5

http://www.sphinx-doc.org/en/stable/domains.html#the-python-domain

sphinxcontrib-trio Documentation, Release 1.1.2

.. method::
:classmethod:

and similarly staticmethod, decorator, and decoratormethod, so dropping this extension into an existing
sphinx project should be 100% backwards-compatible while giving sphinx new superpowers.

Basically, this is how sphinx ought to work in the first place. Perhaps in the future it will. But until then, this extension
is pretty handy.

6 Chapter 2. The big idea

https://github.com/sphinx-doc/sphinx/issues/3743

CHAPTER 3

The details

The following options are supported by the enhanced function:: and method:: directives, and some of them
can be automatically detected if you use autofunction:: / automethod::.

Option Renders like Autodetectable?
:async: await fn() yes!
:decorator: @fn no
:with: with fn() yes! (see below)
:with: foo with fn() as foo no
:async-with: async with fn() yes! (see below)
:async-with: foo async with fn() as foo no
:for: for . . . in fn() yes! (see below)
:for: foo for foo in fn() no
:async-for: async for . . . in fn() yes! (see below)
:async-for: foo async for foo in fn() no

There are also a few options that are specific to method::. They are:

Option Renders like Autodetectable?
:abstractmethod: abstractmethod fn() yes!
:staticmethod: staticmethod fn() yes!
:classmethod: classmethod fn() yes!

3.1 Autodetection heuristics

• :with: is autodetected for:

– functions decorated with contextlib.contextmanager or contextlib2.contextmanager,

– functions that have an attribute __returns_contextmanager__ with a truthy value.

• :async-with: is autodetected for:

7

https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://contextlib2.readthedocs.io/en/stable/#contextlib2.contextmanager

sphinxcontrib-trio Documentation, Release 1.1.2

– functions decorated with contextlib.asynccontextmanager,

– functions that have an attribute __returns_acontextmanager__ (note the a) with a truthy value.

• :for: is autodetected for generators.

• :async-for: is autodetected for async generators. The code supports both native async generators (in Python
3.6+) and those created by the async_generator library (in Python 3.5+).

As you can see, autodetection is necessarily a somewhat heuristic process. To reduce the rate of false positives, the
autodetection code assumes that any given function will have at most one out of the following options: :async:,
:with:, :async-with:, :for:, :async-for:. For example, this avoids the situation where a generator
is decorated with contextlib.contextmanager, and sphinxcontrib-trio ends up applying both :for: and
:with:.

But, despite our best attempts, it’s possible that the heuristics will go wrong. Please do report any cases where this
happens, but in the mean time you can work around the issue by using the :no-auto-options: option to disable
option sniffing, and then add the correct options manually. For example, this code will pull out some_function’s
signature and docstring from the source code, and then treat it as returning an async generator, regardless of its actual
attributes.

.. autofunction:: some_function
:no-auto-options:
:async-for:

Another situation where this might be useful is if you have a function with a complicated calling convention that
can’t be summarized in one line. I can’t really recommend writing such APIs, but if you need to document one, then
:no-auto-options: can be used to tell sphinxcontrib-trio to stop being helpful, and then you can describe the
full calling convention in the text.

8 Chapter 3. The details

https://docs.python.org/3/library/contextlib.html#contextlib.asynccontextmanager
https://www.python.org/dev/peps/pep-0525/
https://github.com/njsmith/async_generator
https://github.com/python-trio/sphinxcontrib-trio/issues
https://github.com/python-trio/sphinxcontrib-trio/issues
https://mail.python.org/pipermail/async-sig/2017-May/000233.html
https://mail.python.org/pipermail/async-sig/2017-May/000233.html

CHAPTER 4

Examples

A regular async function:

.. function:: example_async_fn(...)
:async:

This is an example.

Renders as:

await example_async_fn(...)
This is an example.

A context manager with a hint as to what’s returned:

.. function:: open(file_name)
:with: file_handle

It's good practice to use :func:`open` as a context manager.

Renders as:

with open(file_name) as file_handle
It’s good practice to use open() as a context manager.

The auto versions of the directives also accept explicit options, which are appended to the automatically detected
options. So if some_method is defined as a abstractmethod in the source, and you want to document that it
should be used as a decorator, you can write:

.. automethod:: some_method
:decorator:

and it will render like:

abstractmethod @some_method
Here’s some text automatically extracted from the method’s docstring.

9

sphinxcontrib-trio Documentation, Release 1.1.2

10 Chapter 4. Examples

CHAPTER 5

Bugs and limitations

• Python supports defining abstract properties like:

@abstractmethod
@property
def some_property(...):

...

But currently this extension doesn’t help you document them. The difficulty is that for Sphinx, properties
are “attributes”, not “methods”, and we don’t currently hook the code for handling attribute:: and
autoattribute::. Maybe we should?

• When multiple options are combined, then we try to render them in a sensible way, but this does assume that
you’re giving us a sensible combination to start with. If you give sphinxcontrib-trio nonsense, then it will happily
render nonsense. For example, this ReST:

.. function:: all_things_to_all_people(a, b)
:with: x
:async-with: y
:for: z
:decorator:

Something has gone terribly wrong.

renders as:

with async with for z in @all_things_to_all_people(a, b) as x as y
Something has gone terribly wrong.

• There’s currently no particular support for asyncio’s old-style “generator-based coroutines”, though they might
work if you remember to use asyncio.coroutine.

11

https://docs.python.org/3/library/asyncio-task.html#asyncio.coroutine

sphinxcontrib-trio Documentation, Release 1.1.2

12 Chapter 5. Bugs and limitations

CHAPTER 6

Acknowledgements

Inspiration and hints on sphinx hackery were drawn from:

• sphinxcontrib-asyncio

• Curio’s local customization

• CPython’s local customization

sphinxcontrib-asyncio was especially helpful. Compared to sphinxcontrib-asyncio, this package takes the idea of
directive options to its logical conclusion, steals Dave Beazley’s idea of documenting special methods like coroutines
by showing how they’re used (“await f()” instead of “coroutine f()”), and avoids the forbidden word coroutine.

13

https://pythonhosted.org/sphinxcontrib-asyncio/
https://github.com/dabeaz/curio/blob/master/docs/customization.py
https://github.com/python/cpython/blob/master/Doc/tools/extensions/pyspecific.py
https://trio.readthedocs.io/en/latest/tutorial.html#tutorial
https://mail.python.org/pipermail/async-sig/2016-October/000141.html

sphinxcontrib-trio Documentation, Release 1.1.2

14 Chapter 6. Acknowledgements

CHAPTER 7

Revision history

7.1 Sphinxcontrib_Trio 1.1.2 (2020-05-04)

7.1.1 Bugfixes

• Recent version of Sphinx deprecated its PyClassmember class. We’ve adjusted sphinxcontrib-trio’s internals
to stop using it and silence the warning. (#154)

7.2 Sphinxcontrib_Trio 1.1.1 (2020-03-26)

7.2.1 Bugfixes

• When using autodoc to document a class that has inherited members, we now correctly auto-detect the async-
ness and other properties of those inherited methods. (#19)

• Recent versions of Sphinx deprecated its PyModulelevel class. We’ve adjusted sphinxcontrib-trio’s internals
to stop using it. (#138)

7.3 Sphinxcontrib_Trio 1.1.0 (2019-06-03)

7.3.1 Features

• Added support for Sphinx 2.1. (#23)

7.3.2 Deprecations and Removals

• Drop support for Sphinx 1.6 and earlier. (#87)

15

https://github.com/python-trio/sphinxcontrib-trio/issues/154
https://github.com/python-trio/sphinxcontrib-trio/issues/19
https://github.com/python-trio/sphinxcontrib-trio/issues/138
https://github.com/python-trio/sphinxcontrib-trio/issues/23
https://github.com/python-trio/sphinxcontrib-trio/issues/87

sphinxcontrib-trio Documentation, Release 1.1.2

7.4 Sphinxcontrib_Trio 1.0.2 (2019-01-27)

7.4.1 Bugfixes

• Previously, on Sphinx 1.7, autodoc_member_order="bysource" didn’t work correctly for async meth-
ods. Now, it does. (#13)

7.4.2 Deprecations and Removals

• Remove support for sphinx<1.6. (#14)

7.5 sphinxcontrib-trio 1.0.1 (2018-02-06)

7.5.1 Bugfixes

• Fix an obscure incompatibility with the sphinx.ext.autosummary module’s
autosummary_generate = True setting. (#8)

• Previously, sphinxcontrib-trio had to be listed after sphinx.ext.autodoc in your extensions configuration, or else
sphinx would error out. Now sphinxcontrib-trio automatically loads sphinx.ext.autodoc as needed. (#9)

7.6 sphinxcontrib-trio v1.0.0 (2017-05-12)

Added autodetection heuristics for context managers.

Added rule to prevent functions using @contextlib.contextmanager or similar from being detected as gener-
ators (see bpo-30359).

Added :no-sniff-options: option for when the heuristics go wrong anyway.

Added a test suite, and fixed many bugs. . . but I repeat myself.

7.7 sphinxcontrib-trio v0.9.0 (2017-05-11)

Initial release.

16 Chapter 7. Revision history

https://github.com/python-trio/sphinxcontrib-trio/issues/13
https://github.com/python-trio/sphinxcontrib-trio/issues/14
https://www.sphinx-doc.org/en/stable/usage/extensions/autosummary.html#module-sphinx.ext.autosummary
https://github.com/python-trio/sphinxcontrib-trio/issues/8
https://github.com/python-trio/sphinxcontrib-trio/issues/9
https://bugs.python.org/issue30359

Index

A
all_things_to_all_people() (built-in func-

tion), 11

E
example_async_fn() (built-in function), 9

O
open() (built-in function), 9
overachiever(), 5

S
some_method(), 9

17

	Vital statistics
	The big idea
	The details
	Autodetection heuristics

	Examples
	Bugs and limitations
	Acknowledgements
	Revision history
	Sphinxcontrib_Trio 1.1.2 (2020-05-04)
	Sphinxcontrib_Trio 1.1.1 (2020-03-26)
	Sphinxcontrib_Trio 1.1.0 (2019-06-03)
	Sphinxcontrib_Trio 1.0.2 (2019-01-27)
	sphinxcontrib-trio 1.0.1 (2018-02-06)
	sphinxcontrib-trio v1.0.0 (2017-05-12)
	sphinxcontrib-trio v0.9.0 (2017-05-11)

	Index

