

sphinxcontrib-trio

This sphinx extension helps you document Python code that uses
async/await, or abstract methods, or context managers, or generators,
or … you get the idea. It works by making sphinx’s regular
directives for documenting Python functions and methods smarter and
more powerful. The name is because it was originally written for the
Trio [https://trio.readthedocs.io] project, and I’m not very
creative. But don’t be put off – there’s nothing Trio- or
async-specific about this extension; any Python project can
benefit. (Though projects using async/await probably benefit the most,
since sphinx’s built-in tools are especially inadequate in this case.)

Vital statistics

Requirements: This extension currently assumes you’re using Python
3.5+ to build your docs. This could be relaxed if anyone wants to send
a patch.

Documentation: https://sphinxcontrib-trio.readthedocs.io

Bug tracker and source code:
https://github.com/python-trio/sphinxcontrib-trio

License: MIT or Apache 2, your choice.

Usage: pip install -U sphinxcontrib-trio in the same
environment where you installed sphinx, and then add
"sphinxcontrib_trio" to the list of extensions in your
project’s conf.py. (Notice that "sphinxcontrib_trio" has an
underscore in it, NOT a dot. This is because I don’t understand
namespace packages, and I fear things that I don’t understand.)

Code of conduct: Contributors are requested to follow our code of
conduct [https://github.com/python-trio/sphinxcontrib-trio/blob/master/CODE_OF_CONDUCT.md]
in all project spaces.

The big idea

Sphinx provides some convenient directives for documenting Python
code [http://www.sphinx-doc.org/en/stable/domains.html#the-python-domain]:
you can use the method:: directive to document an ordinary method,
the classmethod:: directive to document a classmethod, the
decoratormethod:: directive to document a decorator method, and so
on. But what if you have a classmethod that’s also a decorator? And
what if you want to document a project that uses some of Python’s many
interesting function types that Sphinx doesn’t support, like async
functions, abstract methods, generators, …?

It would be possible to keep adding directive after directive for
every possible type: asyncmethod::, abstractmethod::,
classmethoddecorator::, abstractasyncstaticmethod:: – you get
the idea. But this quickly becomes silly. sphinxcontrib-trio takes a
different approach: it enhances the basic function:: and
method:: directives to accept options describing the attributes of
each function/method, so you can write ReST code like:

.. method:: overachiever(arg1, ...)
 :abstractmethod:
 :async:
 :classmethod:

 This method is perhaps more complicated than it needs to be.

and you’ll get rendered output like:

	
abstractmethod classmethod await overachiever(arg1, ...)

	This method is perhaps more complicated than it needs to be.

While I was at it, I also enhanced the sphinx.ext.autodoc
directives autofunction:: and automethod:: with new versions
that know how to automatically detect many of these attributes, so you
could just as easily have written the above as:

.. automethod:: overachiever

and it would automatically figure out that this was an abstract async
classmethod by looking at your code.

And finally, I made the legacy classmethod:: directive into an
alias for:

.. method::
 :classmethod:

and similarly staticmethod, decorator, and
decoratormethod, so dropping this extension into an existing
sphinx project should be 100% backwards-compatible while giving sphinx
new superpowers.

Basically, this is how sphinx ought to work in the first
place. Perhaps in the future it
will. [https://github.com/sphinx-doc/sphinx/issues/3743] But until
then, this extension is pretty handy.

The details

The following options are supported by the enhanced function:: and
method:: directives, and some of them can be automatically
detected if you use autofunction:: / automethod::.

	Option

	Renders like

	Autodetectable?

	:async:

	await fn()

	yes!

	:decorator:

	@fn

	no

	:with:

	with fn()

	yes! (see below)

	:with: foo

	with fn() as foo

	no

	:async-with:

	async with fn()

	yes! (see below)

	:async-with: foo

	async with fn() as foo

	no

	:for:

	for … in fn()

	yes! (see below)

	:for: foo

	for foo in fn()

	no

	:async-for:

	async for … in fn()

	yes! (see below)

	:async-for: foo

	async for foo in fn()

	no

There are also a few options that are specific to method::. They are:

	Option

	Renders like

	Autodetectable?

	:abstractmethod:

	abstractmethod fn()

	yes!

	:staticmethod:

	staticmethod fn()

	yes!

	:classmethod:

	classmethod fn()

	yes!

Autodetection heuristics

	:with: is autodetected for:

	functions decorated with contextlib.contextmanager [https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager]
or contextlib2.contextmanager [https://contextlib2.readthedocs.io/en/stable/#contextlib2.contextmanager],

	functions that have an attribute __returns_contextmanager__
with a truthy value.

	:async-with: is autodetected for:

	functions decorated with contextlib.asynccontextmanager [https://docs.python.org/3/library/contextlib.html#contextlib.asynccontextmanager],

	functions that have an attribute __returns_acontextmanager__
(note the a) with a truthy value.

	:for: is autodetected for generators.

	:async-for: is autodetected for async generators. The code
supports both native async generators [https://www.python.org/dev/peps/pep-0525/] (in Python 3.6+) and
those created by the async_generator [https://github.com/njsmith/async_generator] library (in Python
3.5+).

As you can see, autodetection is necessarily a somewhat heuristic
process. To reduce the rate of false positives, the autodetection code
assumes that any given function will have at most one out of the
following options: :async:, :with:, :async-with:,
:for:, :async-for:. For example, this avoids the situation
where a generator is decorated with contextlib.contextmanager, and
sphinxcontrib-trio ends up applying both :for: and :with:.

But, despite our best attempts, it’s possible that the heuristics will
go wrong. Please do report any cases where this happens [https://github.com/python-trio/sphinxcontrib-trio/issues], but in
the mean time you can work around the issue by using the
:no-auto-options: option to disable option sniffing, and then add
the correct options manually. For example, this code will pull out
some_function's signature and docstring from the source code, and
then treat it as returning an async generator, regardless of its
actual attributes.

.. autofunction:: some_function
 :no-auto-options:
 :async-for:

Another situation where this might be useful is if you have a function
with a complicated calling convention that can’t be summarized in one
line [https://mail.python.org/pipermail/async-sig/2017-May/000233.html]. I
can’t really recommend writing such APIs, but if you need to document
one, then :no-auto-options: can be used to tell sphinxcontrib-trio
to stop being helpful, and then you can describe the full calling
convention in the text.

Examples

A regular async function:

.. function:: example_async_fn(...)
 :async:

 This is an example.

Renders as:

	
await example_async_fn(...)

	This is an example.

A context manager with a hint as to what’s returned:

.. function:: open(file_name)
 :with: file_handle

 It's good practice to use :func:`open` as a context manager.

Renders as:

	
with open(file_name) as file_handle

	It’s good practice to use open() as a context manager.

The auto versions of the directives also accept explicit options,
which are appended to the automatically detected options. So if
some_method is defined as a abstractmethod in the source, and
you want to document that it should be used as a decorator, you can
write:

.. automethod:: some_method
 :decorator:

and it will render like:

	
abstractmethod @some_method

	Here’s some text automatically extracted from the method’s docstring.

Bugs and limitations

	Python supports defining abstract properties like:

@abstractmethod
@property
def some_property(...):
 ...

But currently this extension doesn’t help you document them. The
difficulty is that for Sphinx, properties are “attributes”, not
“methods”, and we don’t currently hook the code for handling
attribute:: and autoattribute::. Maybe we should?

	When multiple options are combined, then we try to render them in a
sensible way, but this does assume that you’re giving us a sensible
combination to start with. If you give sphinxcontrib-trio nonsense,
then it will happily render nonsense. For example, this ReST:

.. function:: all_things_to_all_people(a, b)
 :with: x
 :async-with: y
 :for: z
 :decorator:

 Something has gone terribly wrong.

renders as:

	
with async with for z in @all_things_to_all_people(a, b) as x as y

	Something has gone terribly wrong.

	There’s currently no particular support for asyncio’s old-style
“generator-based coroutines”, though they might work if you remember
to use asyncio.coroutine [https://docs.python.org/3/library/asyncio-task.html#asyncio.coroutine].

Acknowledgements

Inspiration and hints on sphinx hackery were drawn from:

	sphinxcontrib-asyncio [https://pythonhosted.org/sphinxcontrib-asyncio/]

	Curio’s local customization [https://github.com/dabeaz/curio/blob/master/docs/customization.py]

	CPython’s local customization [https://github.com/python/cpython/blob/master/Doc/tools/extensions/pyspecific.py]

sphinxcontrib-asyncio was especially helpful. Compared to
sphinxcontrib-asyncio, this package takes the idea of directive
options to its logical conclusion, steals Dave Beazley’s idea of
documenting special methods like coroutines by showing how they’re
used (“await f()” instead of “coroutine f()”), and avoids the
forbidden word [https://trio.readthedocs.io/en/latest/tutorial.html#tutorial]
coroutine [https://mail.python.org/pipermail/async-sig/2016-October/000141.html].

Revision history

Sphinxcontrib_Trio 1.1.2 (2020-05-04)

Bugfixes

	Recent version of Sphinx deprecated its PyClassmember class. We’ve
adjusted sphinxcontrib-trio’s internals to stop using it and silence
the warning. (#154 [https://github.com/python-trio/sphinxcontrib-trio/issues/154])

Sphinxcontrib_Trio 1.1.1 (2020-03-26)

Bugfixes

	When using autodoc to document a class that has inherited members, we
now correctly auto-detect the async-ness and other properties of those
inherited methods. (#19 [https://github.com/python-trio/sphinxcontrib-trio/issues/19])

	Recent versions of Sphinx deprecated its PyModulelevel class.
We’ve adjusted sphinxcontrib-trio’s internals to stop using it. (#138 [https://github.com/python-trio/sphinxcontrib-trio/issues/138])

Sphinxcontrib_Trio 1.1.0 (2019-06-03)

Features

	Added support for Sphinx 2.1. (#23 [https://github.com/python-trio/sphinxcontrib-trio/issues/23])

Deprecations and Removals

	Drop support for Sphinx 1.6 and earlier. (#87 [https://github.com/python-trio/sphinxcontrib-trio/issues/87])

Sphinxcontrib_Trio 1.0.2 (2019-01-27)

Bugfixes

	Previously, on Sphinx 1.7, autodoc_member_order="bysource" didn’t work correctly
for async methods. Now, it does. (#13 [https://github.com/python-trio/sphinxcontrib-trio/issues/13])

Deprecations and Removals

	Remove support for sphinx<1.6. (#14 [https://github.com/python-trio/sphinxcontrib-trio/issues/14])

sphinxcontrib-trio 1.0.1 (2018-02-06)

Bugfixes

	Fix an obscure incompatibility with the sphinx.ext.autosummary [https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html#module-sphinx.ext.autosummary]
module’s autosummary_generate = True setting. (#8 [https://github.com/python-trio/sphinxcontrib-trio/issues/8])

	Previously, sphinxcontrib-trio had to be listed after sphinx.ext.autodoc in
your extensions configuration, or else sphinx would error out. Now
sphinxcontrib-trio automatically loads sphinx.ext.autodoc as needed. (#9 [https://github.com/python-trio/sphinxcontrib-trio/issues/9])

sphinxcontrib-trio v1.0.0 (2017-05-12)

Added autodetection heuristics for context managers.

Added rule to prevent functions using @contextlib.contextmanager
or similar from being detected as generators (see bpo-30359 [https://bugs.python.org/issue30359]).

Added :no-sniff-options: option for when the heuristics go wrong
anyway.

Added a test suite, and fixed many bugs… but I repeat myself.

sphinxcontrib-trio v0.9.0 (2017-05-11)

Initial release.

Index

 A
 | B
 | E
 | O
 | S

A

 	
 	
 all_things_to_all_people()

 	built-in function

B

 	
 	
 built-in function

 	all_things_to_all_people()

 	example_async_fn()

 	open()

E

 	
 	
 example_async_fn()

 	built-in function

O

 	
 	
 open()

 	built-in function

 	
 	overachiever()

S

 	
 	some_method()

 nav.xhtml

 Table of Contents

 		
 sphinxcontrib-trio

_static/file.png

_static/plus.png

_static/minus.png

